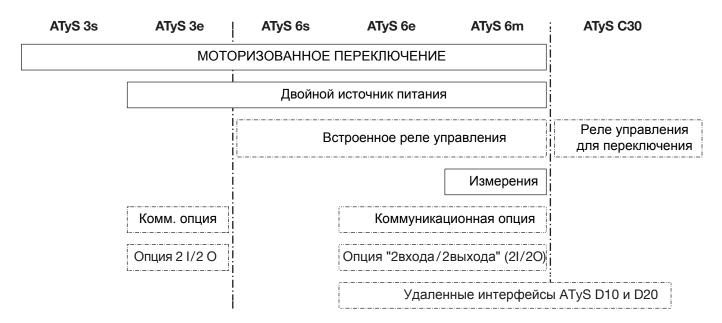
ABTOMATИЧЕСКИЕ ПЕРЕКЛЮЧАТЕЛИ ATyS 6m

Инструкция по эксплуатации

ЗАЩИТИТЕ ВАШ БИЗНЕС


СЕРИЯ АТҮЅ	3
ОБЩЕЕ ОПИСАНИЕ	4
Внешний вид	4
Надписи	5
Параметры окружающей среды	6
Аксессуары, монтируемые заказчиком	7
Аксессуары, монтируемые на заводе	
УСТАНОВКА	8
Размеры	8
Расположение при монтаже	
Аксессуары, монтируемые заказчиком	11
Аксессуары, монтируемые на заводе	13
СОЕДИНЕНИЯ	
Силовые цепи	
Управляющие цепи	16
Набор для цепей питания и контроля	18
УПРАВЛЕНИЕ	24
Ручное управление	24
Электрическое управление	25
ЭКСПЛУАТАЦИЯ	
Общее описание	26
Рабочие режимы	27
Программирование	28
Управление	38
Визуализация	41
Автоматические последовательности	43
ОПЦИИ	46
Коммуникационный модуль	46
УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ	54
ЗАПАСНЫЕ ЧАСТИ	55
ПРИЛОЖЕНИЯ	56
Анализ сети	56
Программирование и соединения ATvS 6	57

СЕРИЯ АТуЅ

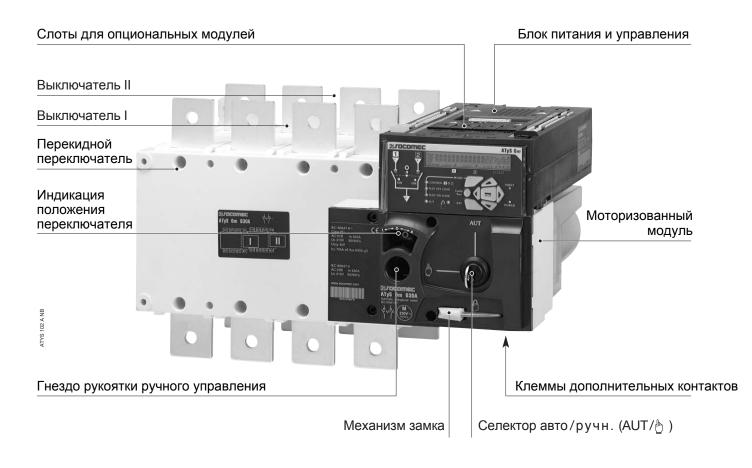
Семейство продуктов ATyS - это полностью моторизованные переключатели с возможностью электрической и механической блокировки. В аварийной ситуации всегда остается возможность ручного управления всеми переключателями. Электрическая команда на переключение реализуется моторизованным модулем с двумя типами логики управления:

- Дистанционное управление: продукты ATyS 3 управляются сигналами сухих контактов, позволяющими переводить переключатель в положение 1, 0 или 2. Эти сигналы могут приходить с внешних логических схем управления.
- Автоматическое управление: продукты AtyS 6 объединяют в себе все элементы управления, таймеры и реле, требуемые для реализации нормальной и аварийной работы.

Версии ATyS 6е и 6m включают также функцию дистанционного управления. Моторизованный и управляющий модули могут легко заменяться без отсоединения силовых кабелей.

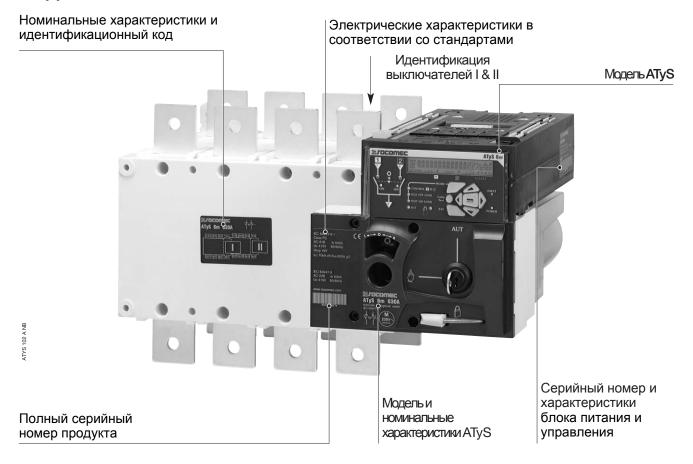
> Данная инструкция применима к следующим продуктам:

Диапазон от 125 до 1600 A, 230 В переменного тока, трех- или четырехполюсные:


- ATyS 3e
- ATyS 6s

- К следующим продуктам прилагается своя инструкция:
- ATvS 3s
- ATyS 6m
- Удаленные интерфейсы ATyS D10 и D20
- Реле управления ATyS C30

ОБЩЕЕ ОПИСАНИЕ *ATyS 6m*


Внешний вид
Надписи
Параметры окружающей среды
Аксессуары, монтируемые заказчиком

Внешний вид

Надписи

ОБЩЕЕ ОПИСАНИЕ *ATyS 6m*

Внешний вид
Надписи
Параметры окружающей среды
Аксессуары, монтируемые заказчиком
Аксессуары, монтируемые на заводе

Параметры окружающей среды

Все продукты семейства соответствуют следующим требованиям к параметрам окружающей среды.

Индекс защиты №

IP2 и класс II для передней стороны.

ЭКСПЛУАТАЦИЯ

> Температура

- -10 +40 °C без понижения номинала
- \bullet -20 +70 °C с понижением номинала (см. каталог)

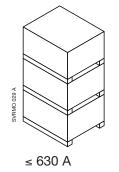
> Влажность

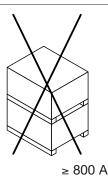
- 80% без конденсации при 55 °C
- 95% с конденсацией при 40 °C

ХРАНЕНИЕ

> Температура

• От -20 до +70 °C


> Срок


• Срок хранения = максимум 1 год.

Не рекомендуется хранить изделия в коррозионно-активной или солевой атмосфере.

> Высота над уровнем моря

Максимальная высота над уровнем моря без понижения номинала = 2000 метров

BEC

Номинал (А)	12	25	16	60	25	50	40	00	60	30	80	00	10	00	12	50	16	00
К-во полюсов	3	4	3	4	3	4	3	4	3	4	3	4	3	4	3	4	3	4
Вес (кг)	4	4,1	4,1	4,2	4,5	4,6	5,5	6	6	6,5	20,4	23,9	23,9	25,4	25,4	30,4	36,9	42,9

СТАНДАРТЫ И ДИРЕКТИВЫ

- > Продукт отвечает требованиям соответствующих европейских директив СЕ.
- > Продукт также отвечает требованиям соответствующих международных директив IEC:
- IEC 60947-3: низковольное оборудование, разъединяющие выключатели,
- IEC 60947-6-1: низковольное оборудование, материалы для автоматического переключения и соединений.

ОБЩЕЕ ОПИСАНИЕ

Аксессуары, монтируемые заказчиком

ШИННЫЕ ПЕРЕМЫЧКИ

Для соединения другс другом клемм нагрузки выключателей I и II.

НАБОР ДЛЯ ЦЕПЕЙ ПИТАНИЯ И КОНТРОЛЯ

Обеспечивает соединения для контроля напряжения и питания между клеммами переключателя и блоком питания и управления. Защищенная трассировка кабелей, не требует специальной защиты кабелей (плавких вставок).

ОПЦИОНАЛЬНЫЕ МОДУЛИ

> N° 1 - коммуникационный модуль

Управление и контроль состояния переключателя по 2- или 3-проводному интерфейсу RS485 с протоколом JBUS/MODBUS $^{\otimes}$ и скоростью передачи данных до 38400 бод.

» N° 2 - 2 входа/2 выхода

КЛЕММНЫЕ КРЫШКИ (ОТ 125 ДО 630 А)

Защита входных и выходных соединительных клемм и деталей от прямого контакта. Не может монтироваться в заднем положении одновременно с набором для контроля напряжения и питания или шинными перемычками.

Может монтироваться сверху или снизу,в переднем или в заднем положении.

КЛЕММНЫЕ ЭКРАНЫ

Защита входных и выходных соединительных клемм и деталей от прямого контакта.

ТРАНСФОРМАТОР УПРАВЛЯЮЩЕГО НАПРЯЖЕНИЯ

Обеспечивает питание стандартного устройства, рассчитанного на питание от 230 В переменного тока, от источника 400 В переменного тока.

МОНТАЖНЫЕ ПРОКЛАДКИ (ОТ 125 ДО 630 А)

Поднимают клеммы переключателя на 10 мм над опорным щитком или каркасом, на котором монтируется устройство.

УДАЛЕННЫЕ ИНТЕРФЕЙСЫ ATYS D10 ИЛИ D20

> ATyS D10

 Дистанционно отображает присутствие источника и положение переключателя.

> ATyS D20

- Дистанционно отображает присутствие источника и положение переключателя.
- Обеспечивает дистанционное конфигурирование, управление и измерения (с передней панели).

Аксессуары, монтируемые на заводе

ДОПОЛНИТЕЛЬНЫЕ КОНТАКТЫ (АС)

Срабатывание и сигнализация для положений I и II: 1 дополнительный контакт НО / НЗ в каждлом

Контакт "Низкий уровень постоянного тока": пожалуйства, обращайтесь к нам.

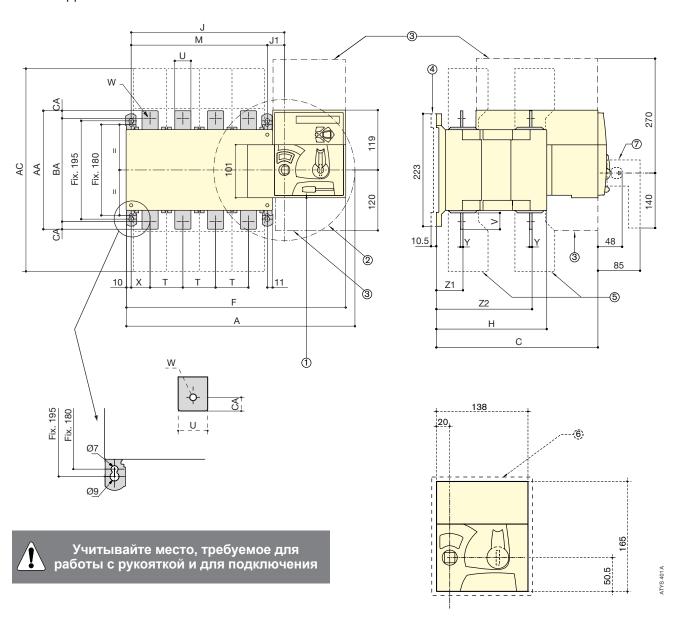
ЗАПИРАНИЕ В 3 ПОЛОЖЕНИЯХ

Позволяет блокировать переключение в трех положениях: I, 0 и II.

АКСЕССУАРЫ ДЛЯ БЛОКИРОВКИ РУКОЯТКИ

Блокировка электрического и ручного управления в положении 0 при помощи замка RONIS EL11AP.

Возможна блокировка в другом положении, если заказана опция "Запирание в 3 положениях". При утопленном монтаже неприменимы.

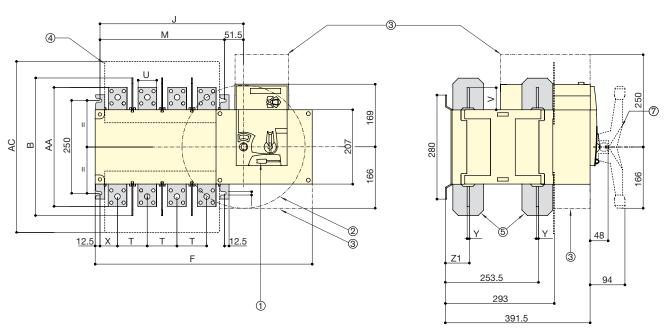

УСТАНОВКА ATyS 6m

Размеры

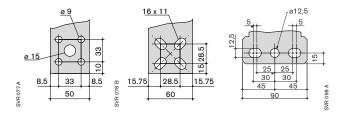
Расположение при монтаже Аксессуары, монтируемые заказчиком Аксессуары, монтируемые на заводе

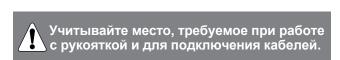
Размеры

От 125 до 630 А


- 1. Замочная скоба с макс. З навесными замками
- 2. Макс. радиус охвата рукоятки, рабочий угол 2 х 90°
- 3. Зона подключений
- 4. Монтажная прокладка (аксессуар)

- 5. Клеммные крышки (аксессуар)
- 6. Вырез
- 7. Съемная рукоятка


Номинал (A)		Общи габари		Клеммнь крышки		Корпус переключателя				лус переключателя Монтаж Соединительные клеммы переключателя														
	А 3р.	A 4p.	С	AC	F 3p.	F 4p.	Н	J 3p.	J 4p.	J1	М 3р.	M 4p.	Τ	U	V	W	Х 3р.	X 4p.	Υ	Z1	Z2	AA	BA	CA
125	304	340	244	235	286.5	322,5	151	154	184	34	120	150	36	20	25	9	28	22	3.5	38	134	135	115	10
160	304	340	244	235	286.5	322,5	151	154	184	34	120	150	36	20	25	9	28	22	3.5	38	134	135	115	10
250	345	395	244.5	280	328	378	153	195	245	35	160	210	50	25	30	11	33	33	3.5	39.5	134.5	160	130	15
400	345	395	244.5	280	328	378	153	195	245	35	160	210	50	35	35	11	33	33	3.5	39.5	134.5	170	140	15
630	394	459	320.5	400	377	437	221	244	304	34	210	270	65	45	50	13	42.5	37.5	5	53	190	260	220	20

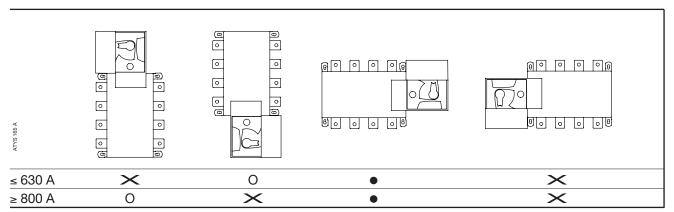

Размеры

От 800 до 1600 А

От 800 до 1000 А 1250 А 1600 А

138 20 (6)

- 1. Замочная скоба с макс. З навесными замками
- 2. Макс. радиус охвата рукоятки, рабочий угол 2 х 90°
- 3. Зона подключений
- 4. Защитный экран (аксессуар)


- 5. Клеммные крышки
- 6. Вырез
- 7. Съемная рукоятка

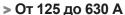
Номинал (A)	Общие габариты	Клеммные крышки		Корпус переключателя				ереключателя			Соеди	інительные	е клеммы		
	В	AC	F 3p.	F 4p.	J 3p.	J 4p.	М 3р.	M 4p.	Т	U	V	Χ	Y	Z1	AA
800	370	461	504	584	306.5	386.5	255	335	80	50	60.5	60	7	66.5	321
1000	370	461	504	584	306.5	386.5	255	335	80	50	60,5	60	7	66.5	321
1250	370	461	504	584	306.5	386.5	255	335	80	60	65	60	7	66.5	330
1 600	380	481	596	716	398.5	518.5	347	467	120	90	44	66	8	67.5	288

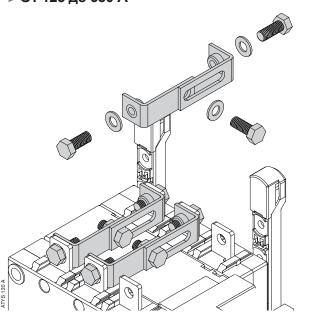
УСТАНОВКА ATyS 6m

Расположение при монтаже

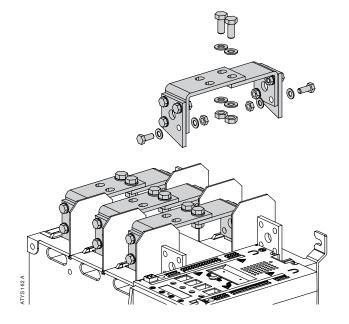
Х: запрещено

О: возможно


•: рекомендуется



Всегда монтируйте изделие на вертикальной поверхности.


Аксессуары, монтируемые заказчиком

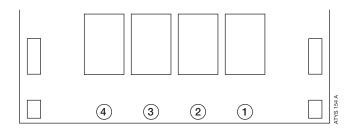
ШИННЫЕ ПЕРЕМЫЧКИ

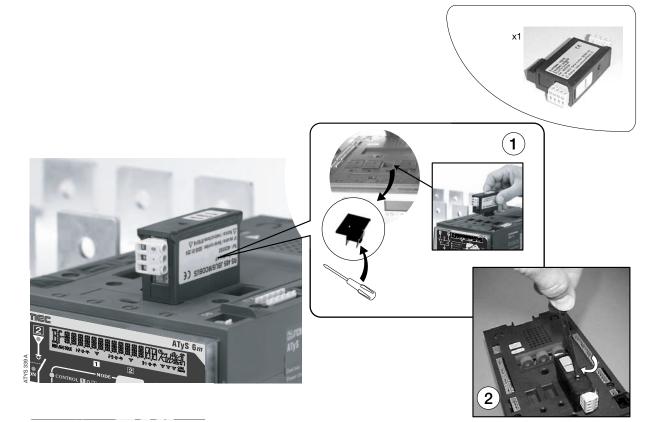
> От 800 до 1250 А

Рекомендуемый момент затяжки Максимальный момент затяжки

M6: 4,5 HM M6: 5,4 HM M8: 8,3 HM M8: 13 HM M10: 20 HM M10: 26 HM M12: 45 HM

Можно монтировать шинные перемычки на любой стороне переключателя.


Аксессуары, монтируемые заказчиком


ОПЦИОНАЛЬНЫЕ МОДУЛИ

> Описание

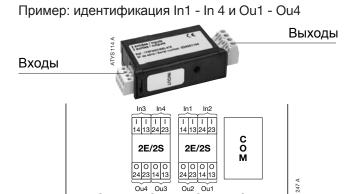
Для подключения опциональных модулей предусмотрены:

- 4 слота на ATyS 6m.
- Модули можно монтировать в любые слоты. Однако, необходимо соблюдать следующую последовательность:
- 1 -я опция в слоте (1) ---> 2-я опция в слоте (2)
- --> 3-я опция в слоте(3)
- --> 4-й слот 4 не используется

Отключите питание модулей.

Для распознавания модуля необходимо отключение питания в течение 3 минут.

УСТАНОВКА ATyS 6m


Размеры
Расположение при монтаже
Аксессуары, монтируемые заказчиком
Аксессуары, монтируемые на заводе

(1)

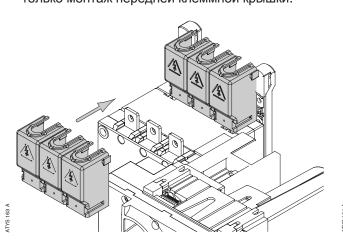
Аксессуары, монтируемые заказчиком

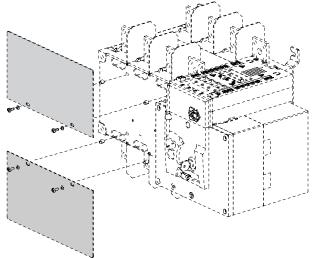
> Идентификация входов/выходов

В переключатель ATyS 6m можно установить до двух модулей "2 входа/ 2 выхода" (21/20). Идентификация клемм зависит от расположения модулей. Идентификация клемм модулей 21/20 выполняется по часовой стрелке, начиная с первого модуля, без учета коммуникационного модуля.

НАБОР ДЛЯ ЦЕПИ ПИТАНИЯ И КОНТРОЛЯ

Монтаж и подключение набора описаны в параграфе "Подключения".

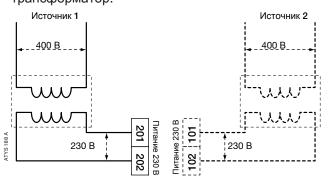

Монтируется до подключения силовых кабелей.


КЛЕММНЫЕ КРЫШКИ (ДЛЯ ПЕРЕКЛЮЧАТЕЛЕЙ ОТ 125 ДО 630 A)

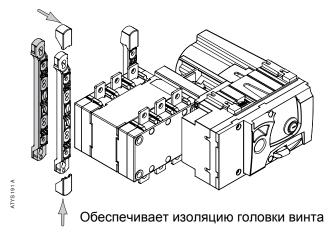
ЗАЩИТНЫЕ ЭКРАНЫ

• Монтируются на входе, на выходе, спереди или сзади.

 При использовании шинных перемычек возможен только монтаж передней клеммной крышки.

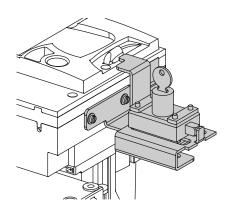

Аксессуары, монтируемые заказчиком

СИЛОВОЙ ТРАНСФОРМАТОР

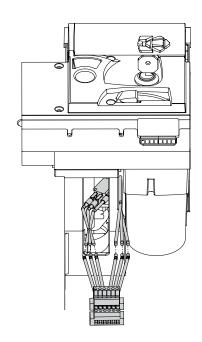

Для сетей 400 В переменного тока (напряжение фаза-фаза) без нейтрали.

Для каждого источника необходим один

Для каждого источника необходим один трансформатор.



МОНТАЖНЫЕ ПРОКЛАДКИ (ДЛЯ ПЕРЕКЛЮЧАТЕЛЕЙ ОТ 125 ДО 630 A)



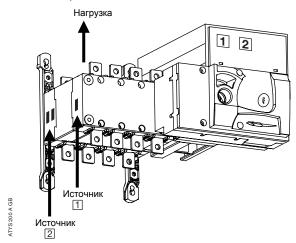
Аксессуары, монтируемые на заводе

АКСЕССУАРЫ ДЛЯ БЛОКИРОВКИ РУКОЯТКИ

ВТОРОЙ ДОПОЛНИТЕЛЬНЫЙ КОНТАКТ

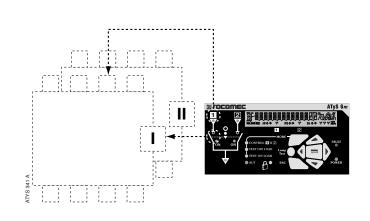
YS 400 A

СОЕДИНЕНИЯ ATyS 6m

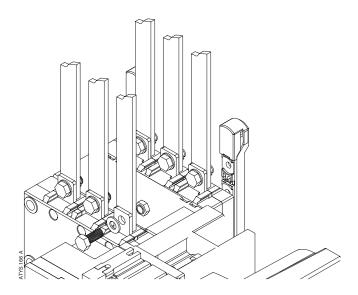

Силовые цепи Управляющие цепи . Набор для цепей питания и контроля

Силовые цепи

СТАНДАРТНОЕ ПОДКЛЮЧЕНИЕ ПРИОРИТЕТНОГО ИСТОЧНИКА К ВЫКЛЮЧАТЕЛЮ І


Изделие поставляется с завода в следующей конфигурации:

- источник Пна модуле управления (разъемы 101 - 106) соединен с выключателем I,
- источник 2 на модуле управления (разъемы 201 - 206) соединен с выключателем II.


При использовании в переключателе ATyS 6 набора для цепи питания и контроля установите этот набор до подключения силовых кабелей.

СОЕДИНЕНИЯ

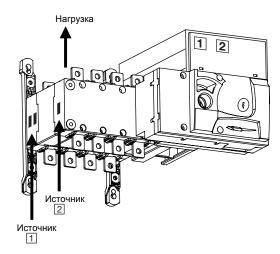
При выборе сечения соединительных кабелей учитывайте их длину.

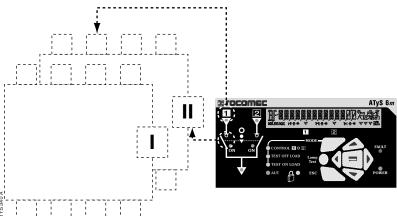
	125 A	160 A	250 A	400 A	630 A	800 A	1 000 A	1 250 A	1 600 A
Минимальное сечение кабелей Cu (мм²) при Ith	35	50	95	185	2x150	2x185	-	-	-
Минимальное сечение шин Cu (мм²) при Ith	-	-	-	-	2x30x5	2x40x5	2x60x5	2x60x5	2 x80x5
Максимальное сечение кабелей Cu (мм²)	50	95	150	240	2x300	2x300	4x185	4x185	6x185
Максимальная ширина шин Cu (мм²) при Ith	20	20	32	32	50	63	63	63	100

затяжки

M6: 4,5 HM M8: 8,3 HM М10: 20 Нм М12: 40 Нм

Рекомендуемый момент Максимальный момент затяжки


М6: 5,4 Нм М8: 13 Нм М10: 26 Нм М12: 45 Нм


Силовые цепи

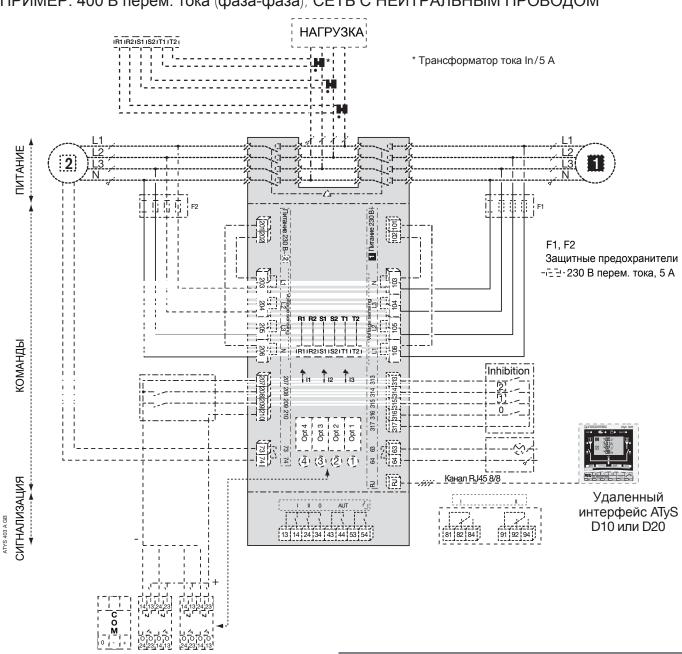
ОСОБОЕ ПОДКЛЮЧЕНИЕ ПРИОРИТЕТНОГО ИСТОЧНИКА К ВЫКЛЮЧАТЕЛЮ ІІ

Для некоторых приложений может потребоваться подключение источника 1 к выключателю II.

В этом случае потребуется модификация программного обеспечения для изменения внутренней связи между источниками 1 и 2 и выключателям I и II.

> Сводка конфигураций и требуемые модификации

	Конфигурация	Требуемая модификация (см. "Программирование", "Установка", "Переменная Sce")
Источник 1 подключен к выключателю I Источник 2 подключен к выключателю II	Стандартная (заводская)	Конфигурирование источника 1 на выключателе I Переменная Sce = I
Источник 1 подключен к выключателю II Источник 2 подключен к выключателю I	Особая	Конфигурирование источника 1 на выключателе II Переменная Sce = II


При изменении значения переменной Sce см. "Программирование", раздел "Установка".

СОЕДИНЕНИЯ *ATyS 6m*

Управляющие цепи

ПРИМЕР: 400 В перем. тока (фаза-фаза), СЕТЬ С НЕЙТРАЛЬНЫМ ПРОВОДОМ

Проверьте напряжение на клеммах питания 101-102 и 201-202: номинал 230 В перем.

Обязательно подключение трех трансформаторов тока.

Максимальная длина управляющих кабелей = 10 м. При большей длине установите управляющие реле.

Максимальная длина соединительного кабеля интерфейса (RJ45) = 3 м.

Перед отсоединением от разъема закоротите вторичные обмотки трансформаторов тока.

Управляющие цепи

Наименование	Клеммы ⁽¹	Описание	Характеристики	Рекомендуемое сечение
Источник питания 1	230 V~102		От 220 до 240 B~ ±20 %	1,5 мм²
Источник		Источник [2]		
питания 2		Входы цепи контроля		
Входы контроля			500 В~ (фаза-фаза)	1,5 мм²
источника 1		Фаза 3	максимум	
		Фаза 2	288 В~ (фаза-нейтраль)	
		Фаза 1	максимум	4.5
Входы контроля			500 В~ (фаза-фаза)	1,5 MM ²
источника 2		Фаза 2	максимум	
		Фаза 3	288 В~ (фаза-нейтраль)	
1/		Нейтраль	максимум	4.52
Команды	207	Общая клемма для входов команд		1,5 MM ²
	208	Вход сигнала перевода на резервный источник (СТS)	<u> </u>	
	209	Вход сигнала дистанционного теста под нагрузкой	Не подключайте	
C	210	Источник питания постоянного тока для 21/20	к источнику питания	4 2
Сигнал	73	Реле запуска/останова генератора - 2 устойчивых положения	Сухой контакт	4 MM ²
запуска ДГ(2)	74	Програм. состояние - зав. установка = NO, замкнуть для запуска	5A AC1/250 B	4.52
Управление Поставление	313	Активизация управления		1,5 MM ²
Программирова-	01.4	при замыкании на 317	_	
ние в импульсном		Перевод в положение [2] при замыкании на 317	/	
(контакторном)	315	Перевод в положение 1 при замыкании на 317	<u>.</u>	
режиме	316	Перевод в положение 0 order if closed with 317	Не подключайте	
	317	Специальный источник напряжения	к источнику питания	
_	D.I	Общая клемма для клемм управления 313 - 316	114	D 145 0 /0
Подключение	RJ	Подключение ATyS D10 или D20	Максимальное растояние 3 м	RJ45 8/8
удал. интерфейса	10	05	EA AO4 (050 D	4.5 2
Дополнит.	13	Общий I - 0 - II	5A AC1/250 B	1,5 мм ²
контакты	14 24	Доп. контакт положения I (HO) Доп. контакт положения II (HO)	-	
положения			-	
П	34 43	Доп. контакт положения 0 (HO) Положение селектора Auto/manu	5A AC1/250 B	1,5 MM ²
Дополнит.	44		5A AC1/250 B	1,5 MM-
контакты /AUT и	53	Замкнут в автоматическом положении Информация о запирании на замок	-	
замок	54	запирании на замок Замкнут, когда замок на месте		
Реле	63	Реле замкнуто, когда изделие неисправно	5A AC1/250 B	1,5 MM ²
неисправности	64	т еле замкнуто, когда изделие неисправно (если подано питание)	3A AC17230 B	1,5 IVIIVI
Второй	81	Общий доп. контакт положения І	5A AC1/250 B	1,5 MM ²
дополнит.	82	Доп. контакт положения І (НЗ)	37 (7 (O 17 200 B	1,0 101101
• •	84	Доп. контакт положения I (НО)	-	
контакт (опция)	91	Общий доп. контакт положения II	-	
(опции)	92	Доп. контакт положения II (H3)	-	
	94	Доп. контакт положения II (НО)	1	
	0	Подключение по RS485		
Коммуникации	-	Triodignic fermic tie trie tee		
у пинации	+	1		
Опция	I13 +	Вход		1.5 MM ²
"2 входа/	114 -	Программируемая функция	HINTOINIA TO HO GO GO B	1,0 IVIIVI
2 выхода"	123 +		Для питания от10 до 30 В= [©]	1.5 MM ²
	124 -	Программируемая функция	П	, , , , , , , , , , , , , , , , , , , ,
	013	Выходное реле	5A AC1/250 B	1,5 мм ²
	014	Программируемая функция		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	O23	Выходное реле		
	O24	Программируемая функция		
Трансформатор	R1	Трансформатор тока I1	CT input 5 A	1,5 MM ²
тока	R2		2	.,0 171171
	S1	Трансформатор тока I2	CT input 5 A	1,5 MM ²
	S2	. Panagraphia op Tona iz	ST IIIpac OTC	.,0 1/11/1
	T1	Трансформатор тока I3	CT input 5 A	1,5 MM ²
	T2		2	.,0 1/11/1
		1		

Точность измерения напряжения и частоты 1 %.

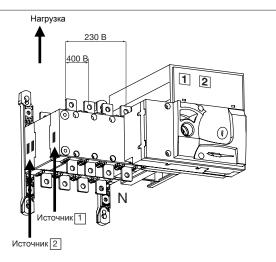
⁽¹⁾ Число клемм может быть разным в зависимости от конфигурации набора для цепи питания и контроля. (2) Для изменения состояния реле см. "Программирование", "Установка". (3) Рекомендуется запитывать модули 21/2О от клемм 207-210 (см. схему соединений).

СОЕДИНЕНИЯ *ATyS 6m*

Набор для цепей питания и контроля

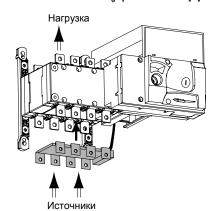
Содержит все соединители для цепей питания и контроля, требуемые для работы изделия.

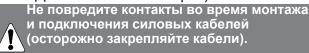
Монтируйте набор до подключения силовых кабелей.

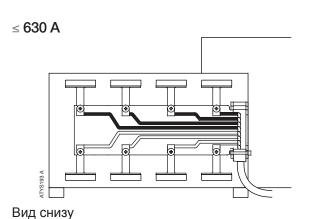

LYS 012 A

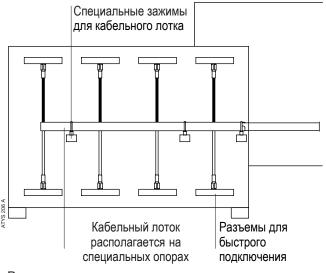
СТАНДАРТНАЯ КОНФИГУРАЦИЯ

Набор поставляется с завода в следующей конфигурации:


- 3-фазная сеть 400/230 В переменного тока, 4проводная, или 230 В переменного тока, 3-проводная,
- нижний кабельный ввод,
- нейтральный провод справа (в случае 4-проводной конфигурации),
- источник 1 подключен к выключателю I.


Набор может адаптироваться к другим конфигурациям, но в этом случае требует изменения подключений и / или программирования.


'S 202 A GB


УСТАНОВКА НАБОРА (ДЛЯ СТАНДАРТНОЙ 4-ПРОВОДНОЙ КОНФИГУРАЦИИ)

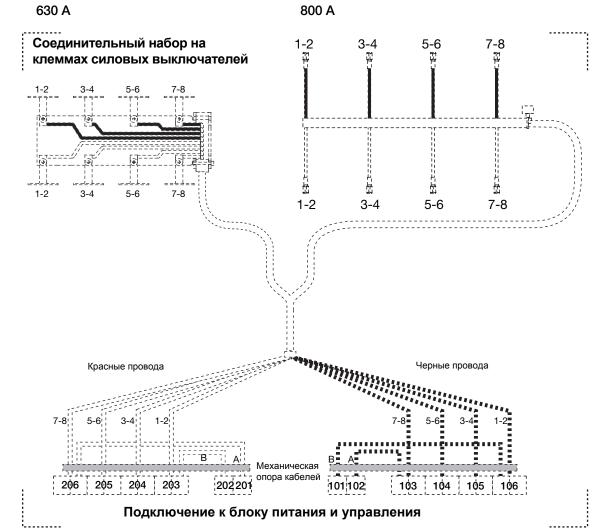
≥ 800 A

Вид снизу

Набор для цепей питания и контроля

СХЕМА ПОДКЛЮЧЕНИЯ НАБОРА

- > Стандартная конфигурация
- Черные провода: выключатель I
- Красные провода: выключатель II
- В конфигурации с верхним кабельным вводом (источники подключаются сверху)


> Номера проводов

Номера проводов определяются в соответствии с клеммами силовых выключателей.

Пример: черный и красный провода 1-2 всегда подключаются к клеммам 1 или 2 выключателя I или II.

Пример: 4-проводный набор (4 полюса)

СОЕДИНЕНИЯ *ATyS 6m*

Набор для цепей питания и контроля

ДРУГИЕ КОНФИГУРАЦИИНабор может адаптироваться к другим конфигурациям, но в этом случае требует изменения подключений или программирования.

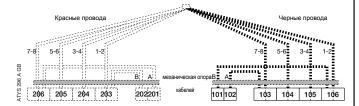
> Процедура монтажа набора для цепей питания и контроля

> ШАГ 1	Нейтраль справа	> Не требует действий
Положение нейтрали	Нейтраль слева	> Перестановка проводов на клеммах 103 - 206 и 203 - 206
> ШАГ 2	Сеть 230/400 В пер. тока	> Не требует действий
Сеть	Сеть 127/230 В пер. тока	> Изменение положения проводов А и В
> ШАГ 3 Ввод источников (кабелей)	Нижний ввод	> Набор для монтажа на выходе
	Верхний ввод	> Набор для монтажа на входе
> ШАГ 4 Подключение кабелей и разъемов	Приоритетная сеть подключена к выкл. I	> Разъемы для подключения (на блоке управления), соответствующие вводу источников
источников к выключателям	Приоритетная сеть подключена к выкл. II	> Разъемы для подключения (на блоке управления), соответствующие вводу источников

Описание шагов см. в следующих параграфах.

Набор для цепей питания и контроля

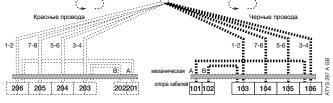
> ШАГ 1: Положение нейтрали



3-проводный набор: для использования только в сети 3 x 230 В перем. тока без нейтрального провода.

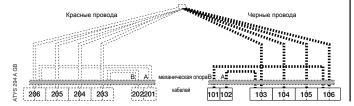
Набор поставляется с завода для нейтрали в правом положении. Для нейтрали слева

• Стандартный набор: нейтраль справа



необходимо изменить подключение кабелей в наборе (клеммы 103 - 106 и 203 - 206).

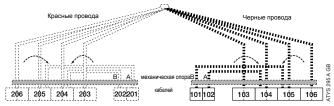
 Модификация набора для нейтрали в левом положении: циклическая перестановка на клеммах 103-106 и 203-206


> ШАГ 2: Сеть

3-проводный набор: для использования только в сети 3 x 230 В перем. тока без нейтрального провода.

На силовых входах (клеммы 101-102 и 201-202) напряжение 220/240 В перем. тока ± 20%. Необходимо адаптировать подключение силовых входных кабелей в соответствии с конфигурацией сети (источник

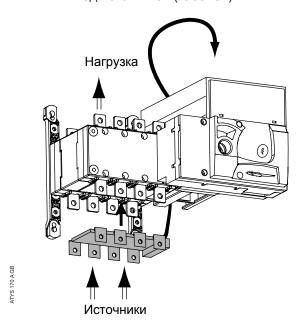
Стандартный набор:
 Сеть 380/415 В перем. тока ± 20% с нейтральным проводом (не требует модификации набора):



Проверьте питающее напряжение на клеммах 101-102 и 201-202: номинал 230В перем. тока \pm 20%.

питания берется между фазами или между фазой и нейтралью).

 Модификация набора: Для сети 220/240 В перем. тока ± 20%, кабели питания А-В для подключения между фазами:


СОЕДИНЕНИЯ *ATyS 6m*

Набор для цепей питания и контроля

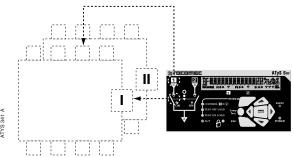
> ШАГ 3: Ввод источников (кабелей)

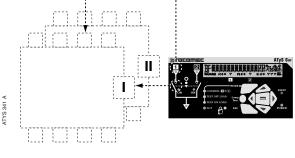
Стандартный набор поставляется с завода для ввода источников снизу (шинные перемычки сверху).

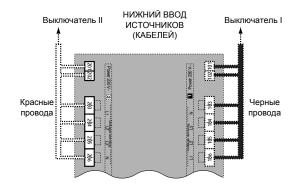
• Нижний ввод источников (кабелей)

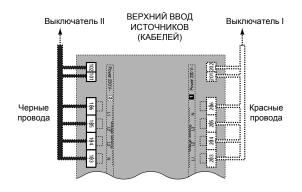
- Черные провода на выключателе I
- Красные провода на выключателе II

Перед монтажом набора проверьте его ориентацию: выходные кабели набора всегда должны находится справа (со стороны блока управления).

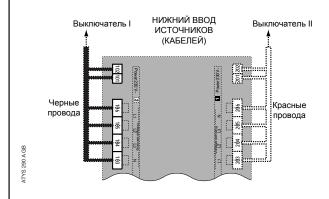

• Верхний ввод источников (кабелей)

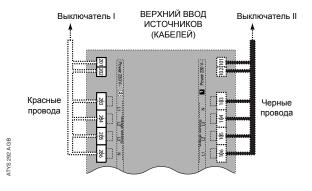

- Нагрузка
 Черные провода на выключателе II
- Красные провода на выключателе I


/S 171 A G


Набор для цепей питания и контроля

- > ШАГ 4: Подключение кабелей и разъемов источников
- Стандартная конфигурация: источник 1 на выключателе I





• Источник 1 на выключателе II

Для установки значения переменной Sce см. параграф "Программирование" ("Установка")

ATYS 291 A GB

ATYS 293 A GB

УПРАВЛЕНИЕ *ATy\$ 6m*

Ручное управление

РЕЖИМЫ 🖔 / AUT

Два рабочих режима - ручной или автоматический, в зависимости от положения переднего селекторного переключателя.

РЕЖИМ "AUT" РЕЖИМ "Ё" Селектор в положении "AUT" Селектор в положении 🖔 **AUT** • для всех версий: электрические • для всех версий: электрические • команды I, 0 и II активны • для ATyS 6 активен режим "AUT" команды запрещены команды запрещены • можно вставить рукоятку • вставить рукоятку невозможно • it is not possible to insert the handle • при установленной рукоятке можно • невозможно выдвинуть механизм • the product is padlocked (standard запереть на замок или переключить product only in 0 position) замка на AUT

АВАРИЙНОЕ УПРАВЛЕНИЕ

Изделием можно управлять вручную (в аварийных условиях или при техобслуживании).

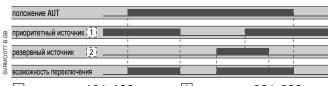
Поверните передний селекторный переключатель в положение ручного управления и вставьте рукоятку в специальное отверстие.

Перед ручным переключением проверьте положение селекторного переключателя.

Удалите рукоятку из изделия перед переводом селектора в положение AUT.

ЗАПИРАНИЕ НА ЗАМОК

Стандартное изделие можно запереть в положении 0. Запирание в положении I или II является опциональным. Поверните передний селекторный переключатель в положение ручного управления и выдвиньте запирающий механизм замка для установки до 3 висячих замков (максимум 8 мм).


Запирание возможно только в ручном режиме с извлеченной рукояткой.

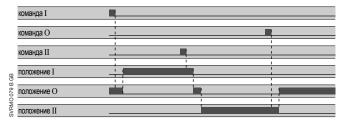
Электрическое управление

ИСТОЧНИК ПИТАНИЯ

ATyS 6m имеет 2 входа питания (101-102, 201-202) и использует доступный источник для обеспечения работы изделия.

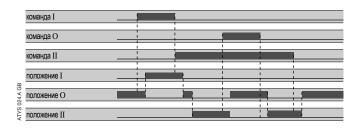
1: клеммы 101-102

2: клеммы 201-202


ЛОГИКА УПРАВЛЕНИЯ

ATyS 6m электрически управляется внешними беспотенциальными контактами между клеммами 314 и 317. Эта команда может подавляться: клеммы 313-317 разомкнуты.

Возможны два типа логики управления: импульсная и контакторная. Выбор логики управления осуществляется программированием (см. раздел "Программирование").

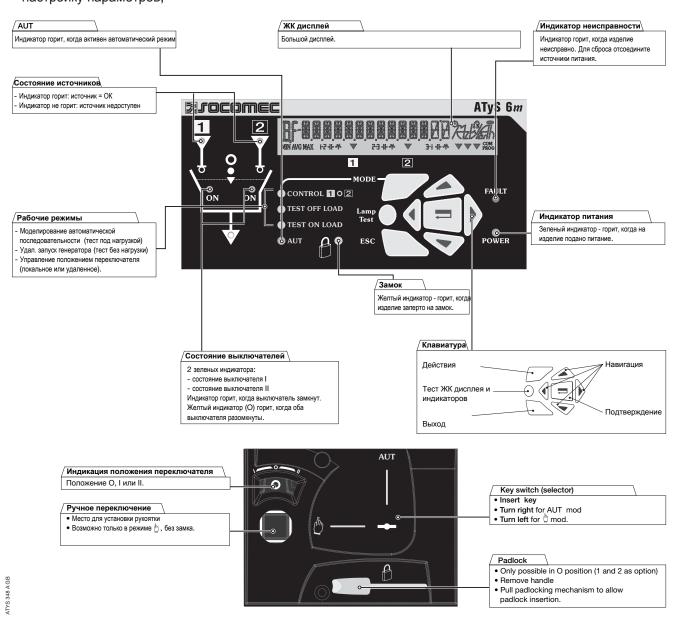

> Импульсная логика (стандартная конфигурация)

- Команда на переключение является импульсным сухим контактом, продолжающимся не менее 30 мс.
- При исчезновении импульса переключатель остается в том же положении.
- Импульс может быть неограниченной продолжительности, не вызывая помех.

> Контактная логика

- Команда на переключение удерживаемый сухой контакт.
- При исчезновении команды I или II устройство возвращается в нулевое положение.
- Команда 0 переводит устройство в нулевое положение, независимо от состояния команд I и II (Пили [2]).

ЭКСПЛУАТАЦИЯ *ATyS 6m*


Общее описание Рабочие режимы Программирование Проверка работы Визуализация Автоматические последовательности

Общее описание

Изделие обеспечивает:

- контроль источников,
- управление автоматическим переключением в режиме AUT,
- настройку параметров,

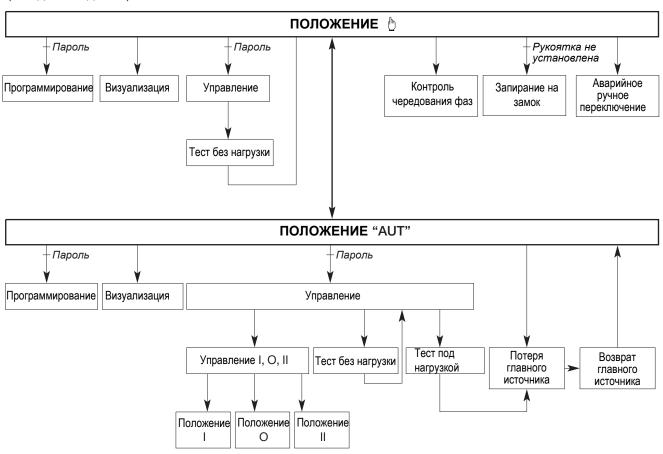
- измерение напряжения и частоты,
- отображение состояния системы,
- индикацию аварий или неисправностей.

ВЕРСИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Отображается после сброса (для сброса необходимо отключение питания в течение 3 минут).

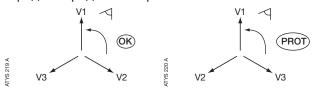
Рабочие режимы

ВИЗУАЛИЗАЦИЯ (VISUALISATION)


Отображение измеряемых величин и параметрических таймеров. Всегда доступен без пароля.

ПРОГРАММИРОВАНИЕ (PROGRAMMING)

Настройка параметров. Доступ через пароль (заводской код 1000).


УПРАВЛЕНИЕ (OPERATION)

Тестовые последовательности электрического управления положением. Доступ через пароль (код 4000).

КОНТРОЛЬ ПОРЯДКА ЧЕРЕДОВАНИЯ ФАЗ

Эта функция позволяет перед запуском в эксплуатацию проверить в ручном режиме порядок чередования фаз.

ш в или в в отображается в зависимости от номера неисправного источника (источник ∏или источник 2).

PRNT 2

Контроль порядка чередования фаз источников ¶ и ②.

SOCOMEC - Réf.: 532 211 B

PRNT 1

ЭКСПЛУАТАЦИЯ *ATyS 6m*

Программирование (Programming)

- Этот режим обеспечивает настройку параметров изделия.
- Всегда доступен в положении b.
- Всегда доступен также в положении AUT, когда переключатель на приоритетном источнике и приоритетный источник присутствует.
- Недоступен, когда активизированы функции "тест без нагрузки", "тест под нагрузкой" и "управление", а также во время выполнения автоматических последовательностей.

Параметры, требующие программирования перед их использованием:

- тип сети,
- номинальное напряжение,
- номинальная частота.

> Навигация по меню

Доступ к параметрам: нажимайте кнопки "вверх", "вниз", "влево" и "вправо".

Изменение параметра: нажимайте кнопку "вправо" для доступа к изменяемому параметру. Нажимайте кнопки "вверх" и "вниз" для изменения параметра и затем нажмите кнопку "подтверждение".

• Возврат в главное меню: нажмите кнопку возврата "ESC". Значение параметра изменяется только после подтверждения.

> Доступ к программированию

• **Шаг 1:** нажмите и удерживайте 5 с кнопку подтверждения

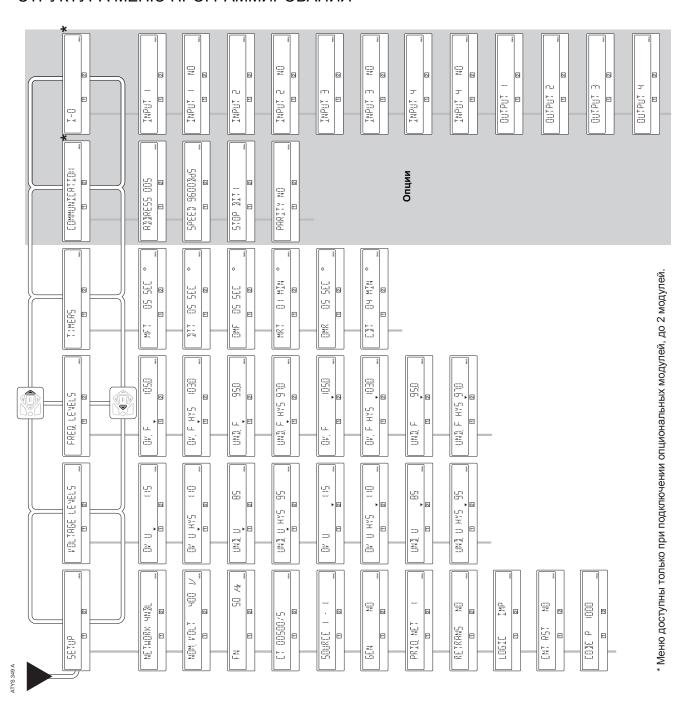
 Шаг 2: введите пароль (заводской код = 1000) при помощи кнопок навигации

• Шаг 3: нажмите кнопку подтверждения

> Выход из программирования

 Нажмите и удерживайте 5 с кнопку подтверждения

Описание


Управление Визуализация Автоматические

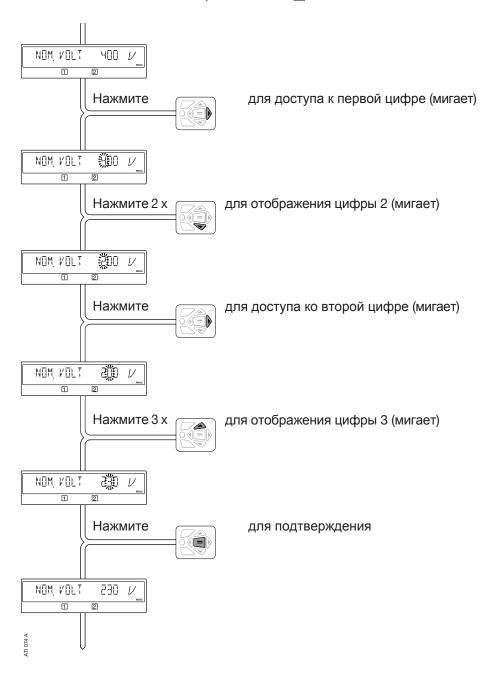
Рабочие режимы Программирование

последовательности

Программирование

СТРУКТУРА МЕНЮ ПРОГРАММИРОВАНИЯ

ЭКСПЛУАТАЦИЯ *ATyS 6m*


Описание Рабочие режимы Программирование Управление Визуализация Автоматические последовательности

Программирование

ИЗМЕНЕНИЕ ПАРАМЕТРА

> Пример:

Изменение номинального напряжения сети 🗇 с 400 на 230 В.

ЭКСПЛУАТАЦИЯ

Программирование

ХАРАКТЕРИСТИКИ ПЕРЕМЕННЫХ

> Меню Setup ("Установка")

ЖК дисплей	Наименование	Определение	Диапазон установки	Значение по умолчанию
NETWORK 4N3L	Тип сети*	Число активных проводников в контролируемой сети (см. приложения)	4NBL, 2NBL, 2BL, 1BL, 3NBL, 41NBL, 42NBL	4NBL
NOM VOLT 400 V	Номинальное напряжение сети	Напряжение фаза-нейтраль для сетей 1BL и 41NBL. Напряжение фаза-фаза для других сетей	От 110 В до 480 В	400 В переменного тока
FN 50 /4	Номинальная частота сети	Номинальная частота сети	50 или 60 Гц	50 Гц
ET 00500/5	Коэффициент токовой трансформации	Коэффициент трансформации для трансформаторов тока (отношение тока в первичной обмотке к току во вторичной)	От 50/5 до 1600/5	500/5
SOURCE 1 - 1	Источник 1 -выключатель I или II	Источник 🗍 (контролируемый и отображаемый) соединен с выкл. І или ІІ (в зависимости от подключения кабелей)	I or II	I
GEN NO ROO	Состояние сигнала запуска генератора	Нормально открытый (NO) или нормально замкнутый (NC)	NO или NC	NO
PRIO NET (noc)	Выбор приоритетной сети	Выбор вводом с клавиатуры (1 или 2) Возможен также через внешний контакт с использованием опции	11 или 2	1
RETRANS NO	Ручное обратное переключение	Активизация функции	Yes или No	No
LICIE IMP	Выбор типа логики управления	Импульсная (IMP) или контактная (CON)	IMP или CON	IMP
ENT RST NO	Сброс счетчика числа переключений	Обеспечивает сброс счетчика числа автоматических переключений с источника 1 на источник 2	Yes or No	No
[[[[] []]]] [] [] [] [] []	Изменение пароля для программир.	Возможно изменение пароля для входа в режим программирования	От 0001 до 9999	1000

^{*} см. приложения

ЭКСПЛУАТАЦИЯ *ATyS 6m*

Описание
Рабочие режимы
Программирование
Управление
Визуализация
Автоматические
последовательности

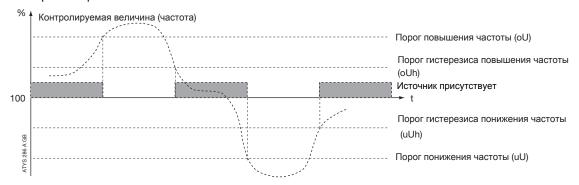
Программирование

> Меню Volt VOLTAGE LEVELS ("Напряжение")

Детектирование порогового значения начинается с автоматической последовательности при потере источника или при возврате источника.

ЖК дисплей	Наименование / Определение	Диапазон установки	Значение по умолчанию
07 U 115	Порог перенапряжения сети [<u>1</u>]	От 102 до 120 %	115%
OV U HYS (IO ū æ	Гистерезис порога перенапряжения сети [1]	От 101 до 119%	110%
บทมี บุ 85 ซ้ อ	Порог понижения напряжения сети [1]	От 80 до 98 %	85 %
บทไม่ หร่5 95 นั้ช	Гистерезис порога понижения напряжения сети <u>[1]</u>	От 81 до 99 %	95%
OV U (15 ស &	Порог пенренапряжения сети (<u>2)</u>	От 102 до 120 %	115%
OV U HYS (10 ซ ซึ้	Гистерезис порога перенапряжения сети <u>[2]</u>	От 101 до 119%	110%
บทไม่ 85 ช ชั	Порог понижения напряжения сети [2]	От 80 до 98 %	85 %
บท1 ⊔ HYS 95 ช &	Гистерезис порога понижения напряжения сети <u>{2</u> ;	От 81 до 99 %	95 %

A


Определение параметров: % от номинальных значений Диапазоны значений гистерезиса ограничены значениями порогов.

ЭКСПЛУАТАЦИЯ

Программирование

> Меню Frequency FREQ LEVEL5 ("Частота")

Детектирование порогового значения начинается с автоматической последовательности при потере источника или при возврате источника.

ЖК дисплей	Наименование / Определение	Диапазон установки	Значение по умолчанию
07. F (050 å æ	Порог повышения частоты сети[<u>†</u>]	От 101 до 120 %	105%
0V, F, HYS 1030	Гистерезис порога повышения частоты сети 🕕	От 100,5 до 119,5 %	103 %
UNIF 950	Порог понижения частоты сети [<u>†</u>]	От 80 до 99 %	95 %
UNIF HYS 970	Гистерезис порога понижения частоты сети [1]	От 80,5 до 99,5 %	97%
OV. F (OSO u ž	Порог повышения частоты сети [2]	От 101 до 120 %	105 %
07. F HYS 1030 tt &	Гистерезис порога повышения частоты сети [<u>2]</u>	От 100,5 до 119,5 %	103 %
UNIF 950 u ž	Порог понижения частоты сети <u>[2]</u>	От 80 до 99 %	95 %
บทมี F HYS 970 ช 🙇	Гистерезис порога понижения частоты сети <u>[2]</u>	От 80,5 до 99,5 %	97%

Определение параметров: % от номинальных значений. Диапазоны значений гистерезиса ограничены значениями порогов.

ЭКСПЛУАТАЦИЯ *АТу\$ 6т*

Описание Рабочие режимы Программирование Управление Визуализация Автоматические последовательности

Программирование

> Меню Timer ("Таймеры")

ЖК дисплей	Наименование	Определение	Диапазон установки	Значение по умолчанию
MFT 05 SEC °	Таймер отказа главной сети		От 0 до 60 с	5 c
177 05 5EE ° no.	Таймер задержки переключения		От 0 до 60 с	5 c
0MF 05 5EE ° no.	Таймер "О" отказа главной сети		От 0 до 20 с	5 c
MRT [] MTN °	Таймер возврата главной сети		От 0 до 30 мин	1 мин
OMR 05 SEC °	Таймер "О" возврата главной сети	Задержка в положении О при обратном переключении с резервной сети на главную сеть	От 0 до 20 с	5 c
CIT OY MIN °	охлаждения	Задает период охлаждения генератора после обратного переключения нагрузки с резервного источника (генератора) на главны	до 10 мин	4 мин

Автоматические переключатели ATyS ЭКСПЛУАТАЦИЯ

Программирование

> Меню Communication

Меню действует только при подключении опционального коммуникационного модуля (см. раздел "Опции").

ЖК дисплей	Наименование	Определение	Диапазон установки	Значение по умолчанию
RIDRESS OOS 2	Адрес	Адрес устройства	От 1 до 247	5
SPEEL 96001dS	Скорость	Скорость передачи данных	2400, 4800, 9600, 19200, 38400	9600
STOP 317 (Стоповый бит		0, 1, 2	1
PARITY NO	Бит четности		No, odd, even	No

ЭКСПЛУАТАЦИЯ *ATyS 6m*

Описание
Рабочие режимы
Программирование
Управление
Визуализация
Автоматические

последовательности

Программирование

> Меню Inputs/Outputs ("Входы/Выходы")

Меню действует при подключении опциональных модулей 21/20 (до 2 модулей).

Для идентификации входных и выходных клемм см. монтаж аксессуаров

Состояние входа может быть задано как NC или NO.

При отключении или повторном подключения опции проверьте идентификацию входов/выходов и их программирование.

Выходые реле конструктивно всегда нормально открытые (NO) и не могут быть настроены как нормально замкнутые (NC)

ЖК дисплей	Наименование / Определение	Диапазон установки	Значение по умолчанию	
INPUT (Вход 1	Ft1, Ft2, Pri, Mtf, S2A, /	/ /	
INPUT (Состояние входа 1	NO, NC, /	/	
INPUT 2	Вход 2	Ft1, Ft2, Pri, Mtf, S2A, /	/	
INPUT 2	Состояние входа 2	NO, NC, /	/	
INPUT 3	Вход 3	Ft1, Ft2, Pri, Mtf, S2A, /	/	
INPUT 3	Состояние входа 3	NO, NC, /	/	
INPUT 4	Вход 4	Ft1, Ft2, Pri, Mtf, S2A, /	/	
INPUT 4	Состояние входа 4	NO, NC, /	/	
	Выход 1	S1A, S2A, LS, /	/	
	Выход 2	S1A, S2A, LS, /	/	
00TPUT 3	Выход 3	S1A, S2A, LS, /	/	
007PUT 4	Выход 4	S1A, S2A, LS, /	/	

• Входы:

Ft1, Ft2: внешние отказы 1, 2. Когда вход активен, мигает индикатор неисправности и на ЖК дисплее отображается Ft1или Ft2. Сбрасывается при деактивизации входа.

PRI: выбор приоритетной сети. Сеть 1 имеет более высокий приоритет, когда вход неактивен. Сеть 2 имеет более высокий приоритет, когда вход активен.

При конфигурировании опции рассматривается только эта информация. Затем действие программируемой переменной Pri подавляется.

Мtf: дистанционное ручное обратное переключение. Функция идентична ручному обратному переключению с клавиатуры. Обратное переключение с приоритетной сети на резервную сеть разрешается при активизации входа (через 1с). Чтобы разрешить распознавание входа, для переменной Мtf в меню Setup должно быть задано значение Yes.

См. автоматическую последовательность "возврат приоритетного источника".

S2A: присутствует источник информации 2 (генератор), используемый вместо измерения напряжения/частоты на переключателе ATyS (это измерение подавляется, когда выбран S2A).

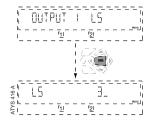
См. автоматическую последовательность "потеря приоритетного источника".

Программирование

> Меню Inputs/Outputs ("Входы/Выходы")

• Выходы:

\$1A, \$2A: Присутствует источник ①или источник ②. Выход активизируется, как только источник ① или источник ② становится присутствующим (аналогично переднему индикатору источника ① и ②).


LS: реле отключения нагрузки. Таймер LS соответствует времени до отключения нагрузок. Реле активизируется до переключения на резервную сеть в соответствии с таймером LS. Реле дезактивизируется после обратного переключения на главную сеть и отсчета таймера LS.

При выборе функции LS требуется сконфигурировать соответствующий таймер LS.

Выход	Функция	Диапазон установки	Значение по умолчанию	
00TPUT 1 00TPUT 3		0.00 (4.5-7)		
0 104100 C	S1A, S2A, LS	От 0 до 60 с (≤ DTT)*	3 c	

^{*}При задании значения DTT ниже LS, для LS будет автматически установлено значение DTT.

Пример: конфигурирование LS (выходное реле Ou1, 3 секунды):

Приоритет источников изменить нельзя, когда LS воздействует на любой выход.

Цикл отключения нагрузки

Выход дезактивизиркется в случае потери питания. Это может потребовать подключения в параллель с выходом отключения нагрузки дополнительного контакта положения 2. Это позволит избежать обратного принятия нагрузки в случае потери аварийного источника в аварийном положении переключателя.

ЭКСПЛУАТАЦИЯ *ATyS 6m*

Описание
Рабочие режимы
Программирование
Управление
Визуализация
Автоматические
последовательности

Управление (Operation)

ОБЩЕЕ ОПИСАНИЕ

Этот режим позволяет начать тест без нагрузки, когда переключатель находится в режиме ручного управления (без замка). В режиме автоматического управления он позволяет начать тест, под нагрузкой или без нагрузки, и электрически управлять положением переключателя.

Вход в режим управления:

• **Шаг 1**: нажмите и удерживайте 5 с кнопку выбора режима

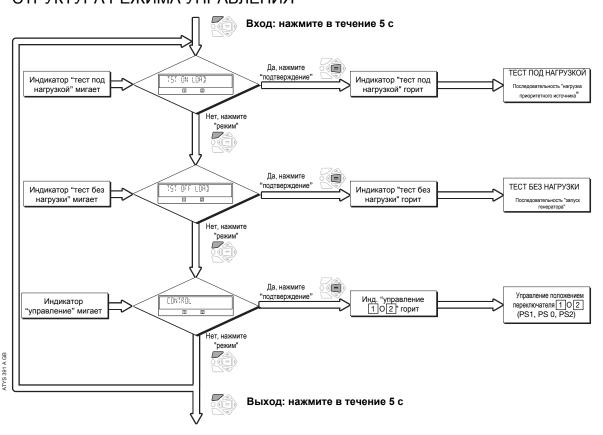
 Шаг 2: при помощи кнопок навигации введите пароль режима управления (код 4000)

• Шаг 3: нажмите кнопку подтверждения

Выход из режима управления:

Нажмите и удерживайте 5 с кнопку выбора режима

Навигация в режиме управления:



 Нажимайте кнопку выбора режима для доступа к различным функциям

• Нажмите кнопку подтверждения для активизации требуемой функции

СТРУКТУРА РЕЖИМА УПРАВЛЕНИЯ

Управление

ТЕСТ БЕЗ НАГРУЗКИ (ДОСТУПЕН В РЕЖИМАХ AUT / ७)

Может запускаться при помощи:

- режима operation ("управление"),
- коммуникационной опции,
- интерфейса ATyS D20.

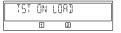
Этот тест обычно выполняется для электроустановок, в которых аварийным источником [2] является генератор (приоритетным источником должен быть источник [1]). Этот тест может запускаться только в автоматическом режиме, когда переключатель находится в положении [1], и источник [1] присутствует.

> Описание

- Этот режим запускает и останавливает дистанционно работу генератора без переключения нагрузки.
- Тест невозможен во время выполнения автоматической последовательности.

ТЕСТ ПОД НАГРУЗКОЙ (ДОСТУПЕН В РЕЖИМЕ AUT)

Может запускаться при помощи:


- режима operation ("управление"),
- внешних сухих контактов (клеммы 207-209).

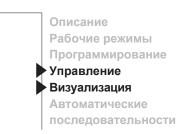
> Описание

- Этот тест моделирует ситуацию потери приоритетного источника. Генерируется автоматическая последовательность переключения нагрузки с приоритетного источника на аварийный источник после запуска в работу резервного источника (в случае генератора). Последовательность возврата всегда сохраняет активной функцию ручного обратного переключения (в присутствии приоритетного источника). Отсчет всех таймеров производится в соответствии с их программируемыми установками.
- После завершения тестовой последовательности изделие автоматически возвращается в режим Visualisation ("визуализация").
- Ручное обратное переключение подтверждается с клавиатуры.

> Запуск с клавиатуры

После получения доступа в режим управления нажмите кнопку выбора режима, при этом индикатор теста под нагрузкой начинает мигать, затем для запуска цикла нажмите кнопку подтверждения. Тест возможен только в автоматическом режиме, когда переключатель находится в положении приоритетного источника, и приоритетный источник присутствует.

Автоматический цикл сохраняет приоритет.


> Удаленный запуск через специальный вход

Можно также запустить тест удаленно замыканием клемм 207 и 209.

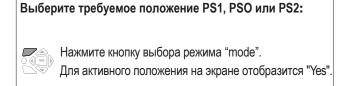
Выполнение цикла начинается от замыкания контактов.

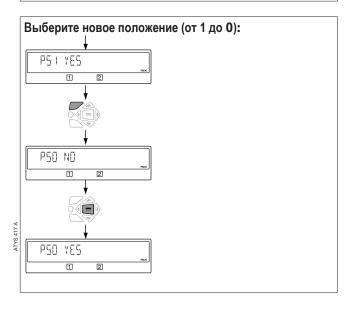
Обратное переключение инициируется размыканием контактов.

ЭКСПЛУАТАЦИЯ *ATyS 6m*

Управление

УПРАВЛЕНИЕЩ 2 (ДОСТУПНО В РЕЖИМЕ AUT)


Может запускаться при помощи:


- режима operation ("управление"). Можно выбрать положение переключателя (1, 0, 2) с клавиатуры,
- сухих контактов. Можно выбрать положение переключателя (①, O, ②) при помощи специальных входов (клеммы 313 317),
- опционального коммуникационного модуля, -интерфейса ATyS D20.

> Удаленный запуск

Этот режим запускается замыканием клемм 313 и 317. Положение переключателя зависит от замыкания между клеммой 317 и клеммами 314-315-316.

> Запуск с клавиатуры

> Описание

Электрическое управление переключателем для перевода его в положения: PS1, PSO, PS2 (1, O или 2) в соответствии с конфигурацией выключателей (источник 1 подключен к выключателю I или II).

Удаленное управление имеет более высокий приоритет в автоматическом режиме. После выполнения последовательности переключения изделие остается в режиме управления.

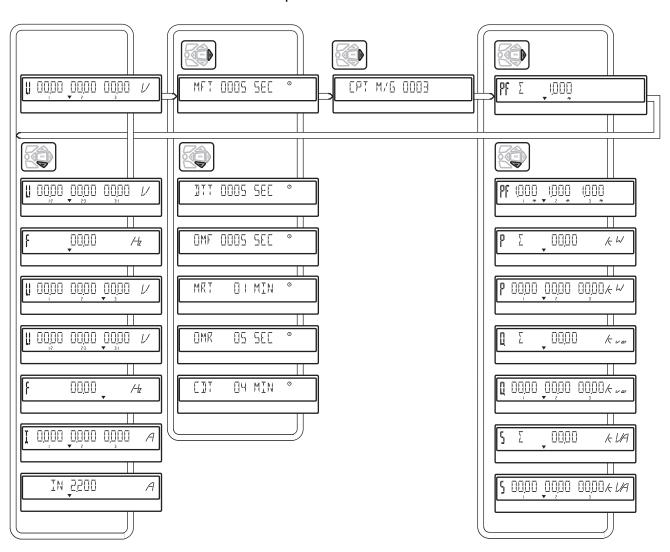
Визуализация (Visualisation)

ОБЩЕЕ ОПИСАНИЕ

- Режим активизируется при подаче питания, в положении 🖔 или AUT.
- Циклы коммутации имеют более высокий приоритет, чем режим визуализации, при их активизации таймеры дисплея производят отсчет.
- Любая величина, доступная в этом режиме, может быть сохранена на экране после ее отображения, за исключением цикла коммутации, возвращаясь к отсчету таймера через 5 с.
- После цикла коммутации дисплей возвращается к отображению напряжения главной сети L1N (первая переменная режима).
- Подсветка выключается через 1 минуту.

Навигация в режиме визуализации:

• Нажимайте кнопки "вверх" и "вниз" для доступа к требуемому параметру


(вправо правимайте кнопки "влево" и "вправо" для навигации по разным меню

ЭКСПЛУАТАЦИЯ *ATyS 6m*

Описание
Рабочие режимы
Программирование
Управление
Визуализация
Автоматические
последовательности

Визуализация

СТРУКТУРА РЕЖИМА ВИЗУАЛИЗАЦИИ

Могут быть доступны не все величины в зависимости от запрограммированного типа сети. Доступные сети и режимы управления приведены в приложениях.

Использование параметров описано в разделе "Программирование".

Автоматические последовательности

РУЧНОЙ РЕЖИМ / АВТОМАТИЧЕСКИЙ РЕЖИМ

- > Ручной режим автоматический режим переключение/возврат источника питания
- При переводе селекторного переключателя в положение AUT активизируется автоматический режим.
- Проверяются значения напряжения и частоты для определения нового устойчивого положения переключателя.
- Та же самая таблица может использоваться при полной потере источника питания (для повторного включения изделие должно быть полностью разряжено в течение 3 минут).

Определение таймеров MFT, MRT и DTT приведено в разделе "Меню timer".

> Новое устойчивое положение переключателя

Начальное положение переключателя	Присутствие источников	Новое положение
Приоритетный источник	Приоритетный источник присутствует, авар. источник присутствует или отсутствует	Приоритетный источник
Приоритетный источник	Приоритетный источник отсутствует в течение периода времени МFT, аварийный источник присутствует или отсутствует	Аварийный источник. Если аварийный источник отсутствует, вначале запустите аварийный источник и подождите перед переключением период времени таймера DTT
Аварийный источник	Аварийный источник присутствует, приоритетный источник отсутствует	Аварийный источник
Аварийный источник	Аварийный источник присутствует, приоритетный источник присутствует в течение периода времени MRT	Приоритетный источник
Положение 0	Приоритетный источник присутствует, аварийный источник отсутствует	Приоритетный источник
Положение 0	Приоритетный источник присутствует, аварийный источник отсутствует	Приоритетный источник
Положение 0	Приоритетный источник отсутствует, аварийный источник присутствует	Аварийный источник
Положение 0	Приоритетный источник отсутствует, аварийный источник отсутствует	Нет действия (из-за отсутствия питания). Когда питание восстанавливается - переключение на доступный источник или на аварийный источник

Переключатель немедленно переводится в новое устойчивое положение после перевода селектора режимов из ручного в автоматический режим или после восстанавления питания.

АВТОМАТИЧЕСКАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ "ПОТЕРЯ ПРИОРИТЕТНОГО ИСТОЧНИКА"

Эта последовательность начинается, когда переключатель находится в автоматическом режиме и в приоритетном положении (положение I источник[1]),

- источник 🗻 присутствует,
- переключатель в положении I,
- источник 2 присутствует или отсутствует.

> Присутствующий источник

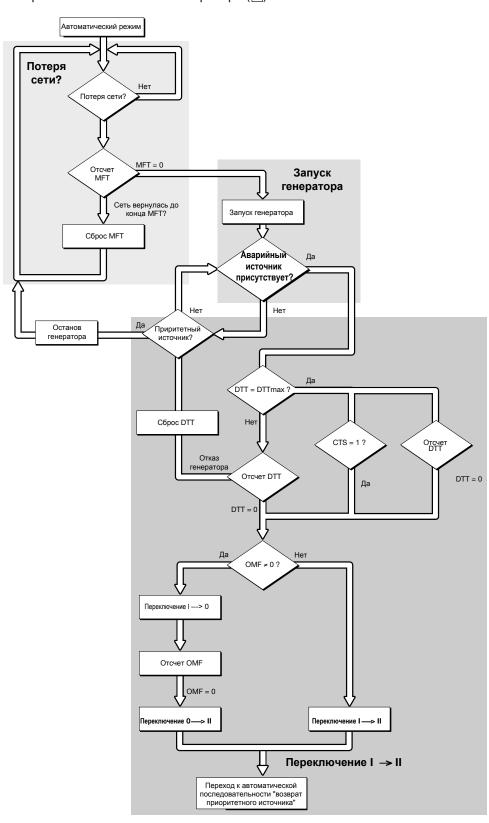
Источник с напряжением и частотой в пределах запрограммированных установок и с правильным порядком чередования фаз.

Можно выполнить переключение с главного источника на аварийный источник до окончания отсчета таймера DTT. Если он установлен на свое

> Специальная функция: дистанционное

максимальное значение (60 с), то можно разрешить переключение замыканием клемм 207-208 (CTS).

управление переключением


ЭКСПЛУАТАЦИЯ *ATyS 6m*

Описание
Рабочие режимы
Программирование
Управление
Визуализация
Автоматические
последовательности

> Описание последовательности

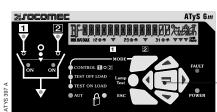
Пример:

положение I = приоритетный источник (1) положение II = аварийный источник типа генератора (2)

ЭКСПЛУАТАЦИЯ

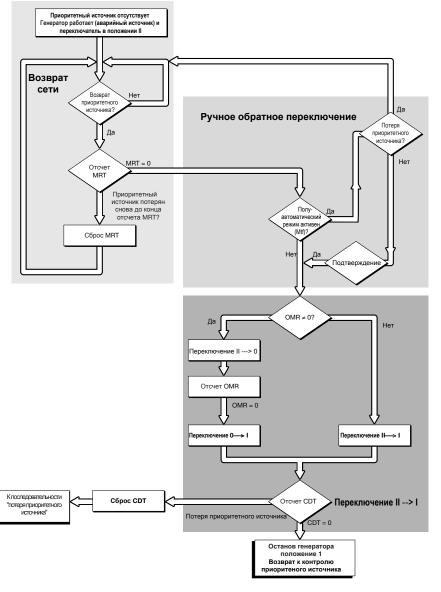
Автоматические последовательности

ВОЗВРАТ НА ПРИОРИТЕТНЫЙ ИСТОЧНИК


Эта последовательность активизируется, когда переключатель находится в автоматическом режиме и в аварийном положении (положение II):

- приоритетный источник 🗍 отсутствует,
- Специальная функция: ручное обратное переключение
- Когда приоритетный источник восстанавливается, иногда не требуется выполнение автоматического обратного переключения, а требуется выполнить ручное переключение в более подходящее время.
- Можно, задав функцию ручного обратного переключения (см. "Программирование"), блокировать обратное переключение.

Оно может запускаться при помощи:


- кнопки подтверждения, локальной или на ATyS D20 🖁
- через вход на опц. модуле 2I/ 2O, функция Mtf.
- > Описание последовательности

- переключатель находится в аварийном положении (например, на генераторе),
- аварийный источник [2] присутствует.

Ручное обратное переключение = нажмите "подтверждение" или активизируйте

активизируйте опциональный вход, функцию Mtf

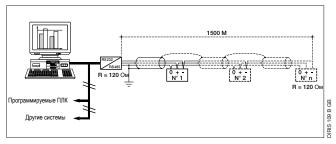
ОПЦИИ *ATyS 6m*

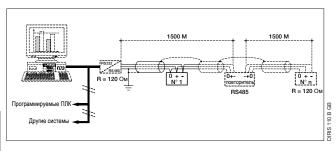
Коммуникационный модуль

Инструкции по монтажу модуля - см. "Монтаж аксессуаров". Этот модуль обеспечивает подключение по RS485 с использованием протокола JBUS/MODBUS®.

RS485	2- или 3-проводный, полудуплексный
Протокол	JBUS/MODBUS® в режиме RTU
Скорость передачи данных	2400, 4800, 9600, 19200, 38400 бод
Гальваническая изоляция	4 кВ (1 мин. 50 Гц)

ОБЩИЕ ПОЛОЖЕНИЯ


Канал RS 485 используется для подключения до 31 устройства ATyS к ПК или к ПЛК на расстоянии 1500 метров с использованием протокола JBUS/MODBUS[©].


> Рекомендации

Следует применять экранированную витую пару (типа LIYCY). В среде с помехами или в большой сети (по длине) мы рекомендуем использовать две экранированные пары(типаLIYCY-CY). В этом случае одна пара используется для + и –, а другая пара, в которой два провода закорочены, для 0 В. Если вы желаете увеличить расстояние (1500 м) и/или максимальное число (31) устройств АТуS, необходимо использовать повторитель (1-канальный) или разрядник (4-канальный). Обращайтесь к нам за дополнительной информацией.

На обоих концах канала следует закрепить сопротивление 120 Ом (имеющееся на опциональном модуле RS485).

Коммуникационный модуль

ПРОТОКОЛ JBUS/MODBUS®

Протокол JBUS / MODBUS®, используемый ATyS, включает в себя диалоги с применением иерархической структуры master-slave ("главный-подчиненный"). Есть два возможных типа диалога:

- главное устройство (master) обращается к подчиненному (slave) устройству (ATyS) и ждет от него ответа.
- главное устройство обращается ко всем подчиненным устройствам (ATyS), не ожидая от них ответа.

Для связи используется режим RTU (Remote Terminal Unit, удаленный терминал), использующий шестнадцатеричные символы длиной не менее 8 бит.

В соответствии с протоколом JBUS/MODBUS®, время передачи должно быть меньше трех пауз, т.е. времени эмисии трех символов, для того чтобы сообщение могло быть обработано ATyS.

Структура стандартного кадра передачи данных:

Slave-адрес Код функции Адрес Данные CRC 16

- Slave-адрес: адрес устройства, с которым устанавливается связь (Add, меню Comm)
- Коды функции:
- 3: для чтения n слов (максимум 128).
- 6: для записи одного слова.
- 8: для диагностики обмена данными между главным и подчиненным устройствами через счетчики 1, 3, 4, 5 и 6.
- 16: для записи n слов (максимум 128).
- Адрес: адрес рассматриваемой переменной (см. следующие таблицы).
- Значения: параметры, связанные с функцией (число слов, значение).

• NB:

При выборе slave-адреса 0, сообщение посылается на все устройства, присутствующие в сети (только длшя функций 6 и 16).

• Замечание:

Время отклика (время ожидания запрос/ответ) составляет максимум 250 мс.

ОПЦИИ *ATyS 6m*

Коммуникационный модуль

СПИСОК ОТОБРАЖАЕЕМЫХ ПАРАМЕТРОВ (ФУНКЦИЯ 3)

> Таблица значений из 2 слов

	Шестнадцатеричный адрес	Число слов	Текст	Единица измерения
768	300	2		A/100
770	302	2	12	A/100
772	304	2	13	A/100
774	306	2	In	A/100
776	308	2	U12 источника 🗓	B/100
778	30A	2	U23 источника 🗓	B/100
780	30C	2	U31 источника 🗓	B/100
782	30E	2	V1 источника 🏻	B/100
784	310	2	V2 источника 🗇	B/100
786	312	2	V3 источника 🗓	B/100
788	314	2	Частота источника 🗓	Гц/100
790	316	2	Активная мощность (полная)	кВт/100
792	318	2	Реактивная мощность (полная)	
794	31A	2	Кажущаяся мощность (полная)	кВА/100
796	31C	2	Коэффициент мощности	0,001
798	31E	2	Активная мощность Р1	кВт/100
800	320	2	Активная мощность Р2	кВт/100
802	322	2	Активная мощность РЗ	кВт/100
804	324	2	Реактивная мощность Р1	кВАр/100
806	326	2	Реактивная мощность Р1	кВАр/100 кВАр/100
808	328	2	Реактивная мощность РЗ	кВАр/100
810	32A	2		
			Кажущаяся мощность Р1	κBA/100
812	32C	2	Кажущаяся мощность Р2	κΒΑ/100 κΒΑ/100
814	32E		Кажущаяся мощность РЗ	
816	330	2	Коэффициент мощности PF1	0,001
818	332	2	Коэффициент мощности PF2	0,001
820	334	2	Коэффициент мощности PF3	0,001
880	370	2	U12 источника 2	B/100
882	372	2	U23 источника ②	B/100
884	374	2	U31 источника 🗵	B/100
886	376	2	V1 источника ②	B/100
888	378	2	V2 источника ©	B/100
890	37A	2	V3 источника 🗈	B/100
892	37C	2	Частота источника 🛛	Гц/100
894	37E	1	MRT	С
895	37F	1	MFT	С
896	380	1	DTT	С
897	381	1	OMF	С
898	382	1	CDT	С
899	383	1	OMR c	

• Пример:

Для считывания U31 GEN = 228,89 должно быть послано следующее сообщение:

Slave	Функция	Старшие разряды адреса	Младшие разряды адреса	Старшие разряды числа слов	Младшие разряды числа слов	CRC 16
05	03	03	74	00	02	85D1

Ответ ATyS:

	Slave	Функция	Число байт	Старшие разряды значения	Младшие разряды значения	CRC 16
Шестнадцатиричн.	05	03	04	0000	5969	458D

Десятичное значение = 22889 (/100).

Коммуникационный модуль

> Таблица значений из 1 слова

Десятичный	Шестнадцатеричный	Число	Текст	Единица измерения
адрес	адрес	ес слов		
1792	700	1	U12 источника 1	B/100
1793	701	1	U23 источника 1	B/100
1794	702	1	U31 источника 🗓	B/100
1795	703	1	V1 источника 🔟	B/100
1796	704	1	V2 источника 1	B/100
1797	705	1	V3 источника 🗓	B/100
1798	706	1	Частота источника 1	Гц/100
1799	707	1	U12 источника 2	B/100
1800	708	1	U23 источника 2	B/100
1801	709	1	U31 источника 2	B/100
1802	70A	1	V1 источника 2	B/100
1803	70B	1	V2 источника [2]	B/100
1804	70C	1	V3 источника [2]	B/100
1805	70D	1	Частота источника[2]	Гц/100
1806	70E	1	Таймер MRT	С
1807	70F	1	Таймер MFT	С
1808	710	1	Таймер DTT	С
1809	711	1	Таймер OMF	С
1810	712	1	Таймер CDT	С
1811	713	1	Таймер OMR	С
1813	715	1	11	A/100
1814	716	1	12	A/100
1815	717	1	13	A/100
1816	718	1	In	A/100
1817	719	1	Активная мощность(полная	кВт
1818	71A	1	Реактивная мощн. (полная)	кВАр
1819	71B	1	Кажущаяся мощн. (полная)	кВА
1820	71C	1	Коэффициент мощн. (полный)	0,001
1821	71D	1	Активная мощность Р1	кВт/100
1822	71E	1	Активная мощность Р2	кВт/100
1823	71F	1	Активная мощность РЗ	кВт/100
1824	720	1	Реактивная мощность Q1	кВАр/100
1825	721	1	Реактивная мощность Q2	кВАр/100
1826	722	1	Реактивная мощность Q3	кВАр/100
1827	723	1	Кажущаяся мощность S1	кВА/100
1828	724	1	Кажущаяся мощность S2	кВА/100
1829	725	1	Кажущаяся мощность S3	кВА/100
1830	726	1	Коэффициент мощности PF1	0,001
1831	727	1	Коэффициент мощности PF2	0,001
1832	728	1	Коэффициент мощности PF3	0,001

ОПЦИИ *ATyS 6m*

Коммуникационный модуль

> Область диагностики

Десятичный адрес	Шестнад- цатер.адрес	Число слов	Текст				
	101	1	Идентификатор продукта	Значе	ние дл	я ATyS	6m: 1240
258	102	1	Опция (1) Без опции: FF Опция СОМ: 00 Опция 2I/2I: 20				
259	103	1	Опция (2)	См. с	пцию (1)	
260	104	1	Опция (3)	См. о	пцию (1	i)	
261	105	1	Опция (4)		пцию (1		
262	106	1	Версия	Верси	ия прог	раммн	ого обеспечения
263	107	2	Серийный номер				
265	109	17	/				
278	116	1	Рабочий режим:	3 усто Бит3 1 0	йчивых Бит2 0 1	ССОСТО: Бит1 1 0 1	яния Бит0 0 Автоматический режим 1 Заперт на замок 0 Ручной режим
282	11A	1	Состояние переключателя		ойчивь Бит1 0 1 0	Бит0 1 Пол 0 Пол	
283	11B	2	/				
285	11D	1	Источник 1> источник счетчик переключений	2:			
286	11E	1	Состояние реле запуска г	енерат Бит5 0 1	ора: 2 у Бит4 1 0	реле	ивых состояния неактивно активно

Коммуникационный модуль

СПИСОК КОНФИГУРИРУЕМЫХ ПАРАМЕТРОВ(ФУНКЦИИ 3, 6, 16)

Десятичный адрес	Шестнадцатеричный адрес	Число слов	Текст	Единица измерения
512	200	1	Тип сети:	
0.2	255	•	0 = 4NBL; 1 = 2NBL; 2 = 2BL;	
			3 = 3NBL; 4 = 41NBL; 5 = 1BL	
			6 = 42NBL	
513	201	5	/	Α
518	206	1	Vноминальное	В
519	207	1	Fноминальная - 50 или 60	Гц
520	208	1	Подключение источника [1	
			$1 = \kappa I$; $2 = \kappa II$	
521	209	1	Обратное переключение:	
			0 = неактивно; 1 = активно	
522	20A	1	оU ① от 102 до 120	%
523	20B	1	oUh ① от 101 до 119	%
524	20C	1	uU 🗓 от 88 до 98	%
525	20D	1	uUh ᠋ от 81 до 99	%
526	20E	1	оU ② от 102 до 120	%
527	20F	1	oUh 2 от 101 до 119	%
528	210	1	uU ② от 80 до 98	%
529	211	1	uUh ② от 81 до 99	%
530	212	1	оF ҈ 1 от 101 до 120	%/10
531	213	1	oFh 🗓 от 100,5 до 119,5	%/10
532	214	1	uF 🗓 от 80 до 99	%/10
533	215	1	uFh 🗓 от 80,5 до 99,5	%/10
534	216	1	оF 2 от 101 до 120	%/10
535	217	1	oFh ② от 100,5 до 119,5	%/10
536	218	1	uF ② от 80 до 99	%/10
537	219	1	uFh ② от 80,5 до 99,5	%/10
538	21A	1	Таймер MRT	min/10
539	21B	1	Таймер MFT	С
540	21C	1	Таймер DTT	С
541	21D	1	Таймер OMF	С
542	21E	1	Таймер CDD	мин/10
543	21F	1	Таймер OMR	С
544	220	1	Приоритетная сеть (1 = R1; 2 = R2	2)
545	221	1	Тип логики управления	
			(0 = IMP; 1 = CON)	
546	222	1	Отключение наргузки LS	С
547	223	1	Запуск ген. 0 = NO; 1 = NC	,
548	224	1	Вход 1:	
			0:/ 3: Pri	
			1: Ft1 4: S2A	
F40	005	4	2: Ft2 5: MtF	
549	225	1	Состояние входа In1: 0 = NO; 1 = NC	
550	226	1	Вход 2:	
550	220	'	0:/ 3: Pri	
			1: Ft1 4: S2A	
			2: Ft2 5: MtF	
551	227	1	Состояние входа In2:	
			0 = NO; 1 = NC	
552	228	1	Выход Ои1:	
			0 = /; 1 = S1A; 2 = S2A;	
			3 = LS	

ОПЦИИ *ATyS 6m*

Коммуникационный модуль

Десятичный адрес	Шестнадцатеричный адрес	Число слов	Текст	Единица измерения
553	229	1	Выход Ou2: 0 = /; 1 = S1A; 2 = S2A; 3 = LS	
554				
555	22B	1	Состояние входа In3: 0 = NO; 1 = NC	
556	56 22C 1 Вход In4: 0 = /; 1 = Ft1; 2 = Ft2;		Вход In4: 0 = /; 1 = Ft1; 2 = Ft2; 3 = Pri; 4 = S2A; 5 = MtF	
557	22D	1	Состояние входа In4: 0 = NO; 1 = NC	
558 22E 1 Выход Ou3: 0 = /; 1 = S1A; 2 = S2 3 = LS				
559	22F	1	Выход Ou4: 0 = /; 1 = S1A; 2 = S2A; 3 = LS	

> Пример

Установка номинального напряжения (233 B) на ATyS № 5.

	Slave	Функция	Старш. разр адреса	Младш. разр адреса	Число	слов	Число байт	Старш. разр. 1-го слова	Младш. разр. 1-го слова	CRC 16
HEX	05	10	02	06	00	01	02	00	E9	76B8
DEC		16							233	

Ответ ATyS:

	Slave	Функция	Старшие разряды значения	Младшие разряды значения	Число слов		CRC 16	
HEX	05	10	02	06	00 01		E1F4	

Коммуникационный модуль

КОМАНДА СОХРАНЕНИЯ (СБРОСА)

Эта команда должна выполняться для сохранения измененных параметров. Для адреса 0600 должно быть задано значение 0.

Slave		Функция	Старшие разряды значения	Младшие разряды значения	Значения	CRC 16
	05	06	06	00	0000	88C6

> NB:

ATyS не отвечает. За командой сохранения следует полный сброс (на ЖК дисплее отображается версия программного обеспечения).

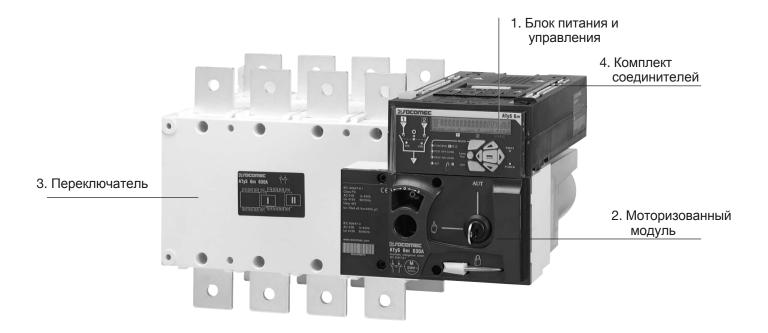
ТЕСТ / УПРАВЛЕНИЕ

> Команда

Slave	Функция	Доп. старшие разряды Pf	Доп. младшие разряды Pf	Старшие разрядь значения Pf	Младшие разрядь значения Pf	CRC
05	06	\$04	\$80	1 бит/функцию	1 = запуск 0 = останов	CRC

> Считывание

Slave	Функция	Доп. старшие разряды Pf	Доп. младшие разряды Pf	Старшие разряды значения Pf	Младшие разрядь значения Pf	CRC
05	03	\$01	\$22	полож. 1	1 бит/функцию если бит = 0: нет теста • бит 0=1: запусн через I/О • бит 1=1: запуск через интерфейс • бит 2=1: запуск через Comm	CRC


Автоматические переключатели *ATyS*УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ ATyS 6m

СИТУАЦИЯ	ДЕЙСТВИЯ
Электрическое управление не работает	 Проверьте, что напряжение на клеммах 101/102 и 201/202 составляет 220-240 В переменного тока ± 20%. Проверьте, что селекторный переключатель режимов находится в положении AUT (автоматический).
Ручное управление при помощи рукоятки невозможно	 Проверьте, что селекторный переключатель в положении ⊕ (ручной), позволяющем вставить рукоятку. Проверьте, что переключатель не заперт на замок. Проверьте правильность направления вращения рукоятки. Постепенно наращивайте усилие, необходимое для вращения.
Селектор A / Мне переводится в AUT	 Проверьте, что рукоятка удалена из гнезда. Проверьте, что переключатель не заперт на замок. Проверьте тип используемого ключа.
Устройство неисправно (активна "неисправность")	 Отсоедините источника питания и попробуйте сбросить неисправность (клеммы 101-102 и 201-202). В случае подключения опционального модуля проверьте, не активен ли вход внешней неисправности Ft1 или Ft2.
Невозможно запереть устройство на замок	 Проверьте активный режим (должен быть ручной). Проверьте, что рукоятка удалена из гнезда. Проверьте, что переключатель находится в положении 0 (кроме случая опционального запирания в трех положениях).
Индикатор присутствия источника никогда не горит, когда источник присутствует	 Нажмите "тест лампочек" для проверки исправности индикатора. Проверьте заданные номинальные значения (напряжения и частоты). Проверьте пороги напряжения и частоты.
Переключатель не выполняет переключение	 Проверьте, что селектор A/M в положении AUT после потери сети. Проверьте присутствие аварийного источника (напр. генератор запущеноверьте, что напряжение на клеммах 101/102 и 201/202 составляет 220-240 В переменного тока ± 20%.
Тест под нагрузкой и без нагрузки не запускается с клавиатуры	 Проверьте пароль для доступа к тесту (4000). Проверьте, что селектор А/М находится в положении AUT.
Переключатель не выполняет обратное переключение после возврата основной сети	 Проверьте, что отсчет таймера MRT завершен. Проверьте, что селектор А / М находится в положении Проверьте, что функция ручного обратного переключения неактивна (для разрешения обратного переключения нажмите "подтверждение").
Обратное переключение выполнено, но аварийны источник продолжает работать (не останавливается)	 Проверьте, что отсчет таймера CDT завершен. Проверьте выходную релейную команду запуска генератора (Start Gen) клеммы 73-74 (если требуется, отсоедините разъем).
Опциональные модули 2I/2O и COM не обнаруживаются после их подключения	 Проверьте. что опциональные модули правильно закреплены. Отключите питание на 3 минуты для сброса и обнаружения модулей.
Электрическое управление не соответствует команда	 Проверьте настройку параметра Sce (источника 1 или 2). Если Sce = I, команда 1 будет замыкать выключатель I. Если Sce = II, команда 1 будет замыкать выключатель II. Проверьте логику управления (импульсный или контактный режим). Проверьте, что внешние команды не запрещены (клеммы 313 и 317).

SOCOMEC - Réf.: 532 211 B

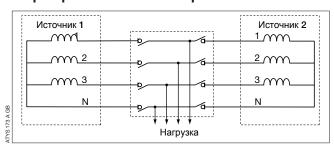
54

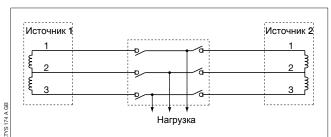
ЗАПАСНЫЕ ЧАСТИ *ATyS 6m*



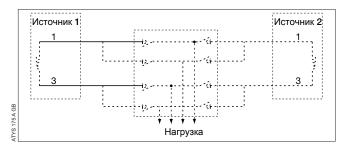
6. Ключ

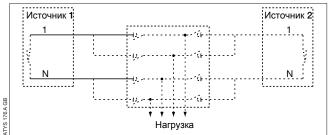
№ п/п	Изделие	Коды заказ	a		
1	Блок питания и управления	ATyS 6m	1579 2001		
2	Моторизованный модуль	125 A	1509 5012		
		160 A	1509 5016		
		250 A	1509 5025		
		400 A	1509 5040		
		630 A	1509 5060		
		800 A	1509 5080		
		1000 A	1509 5100		
		1250 A	1509 5120		
		1600 A	1509 5160		
3	Переключатель	125 A 3P	1509 3012	125 A 4P	1509 4012
		160 A 3P	1509 3016	160 A 4P	1509 4016
		250 A 3P	1509 3025	250 A 4P	1509 4025
		400 A 3P	1509 3040	400 A 4P	1509 4040
		630 A 3P	1509 3063	630 A 4P	1509 4063
		800 A 3P	1509 3080	800 A 4P	1509 4080
		1000 A 3P	1509 3100	1000 A 4P	1509 4100
		1250 A 3P	1509 3120	1250 A 4P	1509 4120
		1600 A 3P	1509 3160	1600 A 4P	1509 4160
4 5	Комплект соединителей (по 1 шт. каждого)		1509 0002	· ·	
5	Опора рукоятки/ рукоятка	125-630 A	1599 6001		
		800-1600 A	1599 6011		
6	Ключи (2 шт.)		1599 9502		

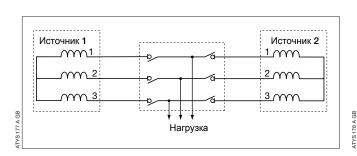

ПРИЛОЖЕНИЯ *ATy\$ 6m*

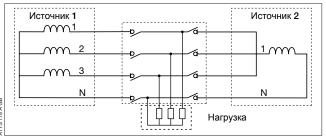

Анализ сети

ТИПЫ СЕТЕЙ

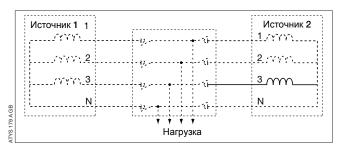

> Трехфазная сеть с нейтралью - 4NBL


> Двухфазная сеть (со средней точкой) - 2NBL


> Сеть "фаза-фаза" без нейтрали - 2BL


> Однофазная сеть с нейтралью ("фаза-нейтраль") - 1BL

> Трехфазная сеть без нейтрали - 3NBL



> Трехфазная сеть с нейтралью на источнике 1
Однофазная сеть с нейтралью на источнике 2 - 41 NBL

> Контроль трех фаз в сети 1 - контроль одной фазы в сети 2 - 42 NBL

Рассматривается только однофазное измерение (фазы 1-3) на источнике [2]. Обеспечивает однофазное измерение на трехфазном аварийном источнике.

Программирование и соединения ATyS 6m

КОНТРОЛЬ ТРЕХ ФАЗ НА ИСТОЧНИКАХ 1 И 2

	3 фазы	1 фаза	1 фаза	1 фаза	3 фазы	3 фазы	
	4 провода	3 провода	2 провода	1 провод	3 провода		
Прог. ATyS	4NBL	2NBL	2 BL	1BL	3NBL	41NBL	42NBL
Источник 1 (активные соединения)	3 N 2	1	1 1	1 N	3 2	3 N	3 N
Источник 2 (активные соединения)	1 3 N 2	1	1 1	1 N	3 2	1 N	1 1
Доступные измеряемые параметры	Источник1 U12, U23, U31, U1, U2, U3, f1	Источник1 U12, U23, U31, f1	Источник 1 U31, f1	Источник1 U1, f1	Источник1 U12, U23, U31, f1	Источник1 U1, U2, U3, f1	Источник1 U12, U23, U31, U1, U2, U3, f1
	Источник2 U12, U23, U31, U1, U2, U3, f2	U12, U23,	Источник ² U31, f2	Источник 2 U1, f2	Источник2 U31, f2, U12, U23	Источник 2 U1, f2	Источник2 U31, f2
Управление	Источник1 U12, U23, U31, f1	Источник1 U12, U23, U31, f1	Источник 1 U31, f1	Источник1 U1, f1	Источник1 U12, U23, U31, f1	Источник1 U1, U2, U3, f1	Источник1 U12, U23, U31, f1
	Источник2 U12, U23, U31, f2		Источник 2 U31, f2	Источник 2 U1, f2	Источник2 U31, f2, U12, U23		Источник② U31, f2
Пример Un = 240 B	Источник 1 U12 = U23 = U31 = 240 B f1 = 50 Гц	Источник 1 U31 = 240 B f1 = 50 Гц	Источник 1 U31 = 240 B f1 = 50 Гц	Источник 1 U1 = 240 B f1 = 50 Гц	Источник 1 U12 = U23 = U31 = 240 B f1 = 50 Гц	Источник 1 U1 = U2 = U3 = 240 B f1 = 50 Гц	Источник 1 U12 = U23 = U31 = 240 B f1 = 50 Гц
	Источник2 U12 = U23 = U31 = 240 B f2 = 50 Гц	Источник2 U31 = 240 B f2= 50 Гц	Источник2 U31 = 240 B f2 = 50 Гц	Источник2 U1 = 240 B f2 = 50 Гц	Источник2 U12 = U23 = U31 = 240 B f2 = 50 Гц	Источник2 U1 = 240 B f2 = 50 Гц	Источник2 U31 = 240 B f2 = 50 Гц
Кабели трансфор- маторов тока	1 R1 R2 R2 T1 S ² SS1 3	1 R1 R1 R2 S2 S S S S S S S S S S S S S S S S S	1 R1 R2	1 R1 R2 N	1 T1 T2 T2 R1 3 S1 S2 2	1 R1 R2 T1 R2 R2 S2 T1 S2 S1 3	1 R1 R2 T2 S2 T1 S2 S2 S1 3
Доступные измеряемые параметры	P2, Q2, S2, PF2	P_T, Q_T, S_T, PF_T	P_T , Q_T , S_T , PF_T	P_T , Q_T , S_T , PF_T	P _T , Q _T , S _T , PF _T I1, I2, I3	P2, Q2, S2, PF2 P3, Q3, S3, PF3	P1, Q1, S1, PF1 P2, Q2, S2, PF2 P3, Q3, S3, PF3 P _T , Q _T , S _T , PF _T I1, I2, I3, In

www.socomec.ru тел. (495) 981-13-66 sales@socomec.ru

